With a view toward the determination of nucleic acid binding domains and sites on nucleic acid helix-destabilizing (single strand-specific) proteins (HDPs), we have studied the interactions of the copolymer polynucleotide photoaffinity label, poly(adenylic, 8-azidoadenylic acid), (poly(A,8-N3A] with the T4 bacteriophage HDP, 32 protein. Poly(A,8-N3A) quenched the intrinsic tryptophan fluorescence of 32 protein in a manner similar to that observed with other polynucleotides, and the effect could be reversed by addition of sufficient NaCl. The binding affinity and site size of this noncovalent interaction of poly(A,8-N3A) with 32 protein are similar to the values obtained for poly(A) and this protein. When [3H]poly(A,8-N3A)/32 protein mixtures were irradiated at 254 nm, fluorescence quenching was not reversed by NaCl, suggesting that the label was covalently bound to the protein. Mixtures of photolabel and protein subjected to short periods of irradiation (generally 1 min, 2000 erg mm-2) formed high molecular weight complexes, which when electrophoresed on sodium dodecyl sulfate (SDS)-polyacrylamide gels were radioactive and stained with Coomassie Blue R. Under the same conditions, [3H]poly(A) failed to label 32 protein. The radioactivity of [3H]poly(A,8-N3A)-labeled complexes subjected to micrococcal nuclease after irradiation was seen to migrate just behind the free 32 protein monomer on SDS-polyacrylamide gels, indicating that portions of the photolabel not in direct contact with protein were accessible to this enzyme. By several criteria, we conclude that 32 protein was photolabeled specifically at its single-stranded nucleic acid binding site. Single-stranded nucleic acids with affinities for protein greater than that of poly(A,8-N3A) effectively inhibited photolabeling. The [NaCl] dependence of photolabeling monitored on SDS gels paralleled the NaCl reversal of (noncovalent) poly(A,8-N3A)-32 protein binding. Photolabeling reached a plateau after 1-2 min. The formation of high molecular weight complexes with increasing [poly(A,8-N3A)] paralleled the disappearance of free protein on SDS gels, and reached a saturation level of about 75% labeling. Several chromatographic procedures appear to be useful for the separation of the photolabeled complexes from free protein and photolabel. Limited trypsin hydrolysis of photolabeled 32 protein indicated that all the label was within the central ("III") portion of the protein. This approach should have general applicability to the identification of nucleic acid binding sites on helix-destabilizing proteins.
Read full abstract