Surface diffusion of small adsorbates is analyzed in terms of the so-called intermediate scattering function and dynamic structure factor, observables in experiments using the well-known quasielastic Helium atom scattering and Helium spin echo techniques. The linear theory applied is an extension of the neutron scattering due to van Hove and considers the time evolution of the position of the adsorbates in the surface. This approach allows us to use a stochastic trajectory description following the classical, quantum and Bohmian frameworks. Three different regimes of motion are clearly identified in the diffusion process: ballistic, Brownian and intermediate which are well characterized, for the first two regimes, through the mean square displacements and Einstein relation for the diffusion constant. The Langevin formalism is used by considering Ohmic friction, moderate surface temperatures and small coverages. In the Bohmian framework, analyzed here, the starting point is the so-called Schrödinger-Langevin equation which is a nonlinear, logarithmic differential equation. By assuming a Gaussian function for the probability density, the corresponding quantum stochastic trajectories are given by a dressing scheme consisting of a classical stochastic trajectory followed by the center of the Gaussian wave packet, and issued from solving the Langevin equation (particle property), plus the time evolution of its width governed by the damped Pinney differential equation (wave property). The Bohmian velocity autocorrelation function is the same as the classical one when the initial spread rate is assumed to be zero. If not, in the diffusion regime, the Brownian-Bohmian motion shows a weak anomalous diffusion.
Read full abstract