Abstract

Helium spin echo experiments combined with abinitio based Langevin molecular dynamics simulations are used to quantify the adsorbate-substrate coupling during the thermal diffusion of Na atoms on Cu(111). An analysis of trajectories within the local density friction approximation allows the contribution from electron-hole pair excitations to be separated from the total energy dissipation. Despite the minimal electronic friction coefficient of Na and the relatively small mass mismatch to Cu promoting efficient phononic dissipation, about (20±5)% of the total energy loss is attributable to electronic friction. The results suggest a significant role of electronic nonadiabaticity in the rapid thermalization generally relied upon in adiabatic diffusion theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call