This work focuses on the robust attitude tracking control problem for a small– scaled unmanned helicopter where the actual system inputs, namely the elevator servo input, the aileron servo input and the rudder servo input, are used in the controller formulation. The design process is divided into two parts. Initially the problem is transformed into a second order system with an uncertain non–symmetric input gain matrix by utilizing some reasonable simplifications for the rotor model under the hovering flight conditions. Then a novel robust control methodology is utilized via a matrix decomposition method. The stability of the overall system is ensured by Lyapunov type analysis where asymptotic position tracking is ensured. Numerical simulation results are presented to demonstrate the efficiency of the proposed method.
Read full abstract