We present a full-wave numerical tool, dubbed ADAMANT (Advanced coDe for Anisotropic Media and ANTennas), devised for the analysis and design of radiofrequency antennas which drive the discharge in helicon plasma sources. ADAMANT relies on a set of coupled surface and volume integral equations in which the unknowns are the surface electric current density on the antenna conductors and the volume polarization current within the plasma. The latter can be inhomogeneous and anisotropic whereas the antenna can have arbitrary shape. The set of integral equations is solved numerically through the Method of Moments with sub-sectional surface and volume vector basis functions. This approach allows the accurate evaluation of the current distribution on the antenna and in the plasma as well as the antenna input impedance, a parameter crucial for the design of the feeding and matching network. We report several numerical examples which serve to validate ADAMANT against other well-established numerical approaches as well as experimental data. The numerical accuracy of the computed solution versus the number of basis functions in the plasma is also assessed. Finally, we employ ADAMANT to characterize the antenna of a real-life helicon plasma source.
Read full abstract