Rhinovirus (RV) infection is a major cause of common colds and asthma exacerbations, with no antiviral drug available. Curcumin exhibits broad-spectrum antiviral activities, but its therapeutic effect is limited by a poor pharmacokinetics profile. Curcumin-like diarylpentanoid analogs, particularly 2-benzoyl-6-(3,4-dihydroxybenzylidene)cyclohexen-1-ol (BDHBC) and 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), have better solubility and stability compared to curcumin. Therefore, this study aims to evaluate and compare the antiviral effects of curcumin, BDHBC, and DHHPD in an in vitro model of RV infection. The inhibitory effects on RV-16 infection in H1 HeLa cells were assessed using cytopathic effect (CPE) reduction assay, virus yield reduction assay, RT-qPCR, and Western blot. Antiviral effects in different modes of treatment (pre-, co-, and post-treatment) were also compared. Additionally, intercellular adhesion molecule 1 (ICAM-1) expression, RV binding, and infectivity were measured with Western blot, flow cytometry, and virucidal assay, respectively. When used as a post-treatment, BDHBC (EC50: 4.19µM; SI: 8.32) demonstrated stronger antiviral potential on RV-16 compared to DHHPD (EC50: 18.24µM; SI: 1.82) and curcumin (less than 50% inhibition). BDHBC also showed the strongest inhibitory effect on RV-induced CPE, virus yield, vRNA, and viral proteins (P1, VP0, and VP2). Furthermore, BDHBC pre-treatment has a prophylactic effect against RV infection, which was attributed to reduced basal expression of ICAM-1. However, it did not affect virus binding, but exerted virucidal activity on RV-16, contributing to its antiviral effect during co-treatment. BDHBC exhibits multiple antiviral mechanisms against RV infection and thus could be a potential antiviral agent for RV.