We tested the consequences of noncommutative (NC from now on) coordinates xk, k = 1, 2, 3 in the framework of quantum mechanics. We restricted ourselves to 3D rotationally invariant NC configuration spaces with dynamics specified by the Hamiltonian \documentclass[12pt]{minimal}\begin{document}$\hat{H} = \hat{H}_0 + \hat{U}$\end{document}Ĥ=Ĥ0+Û, where \documentclass[12pt]{minimal}\begin{document}$\hat{H}_0$\end{document}Ĥ0 is an analogue of kinetic energy and \documentclass[12pt]{minimal}\begin{document}$\hat{U} = \hat{U}(\hat{r})$\end{document}Û=Û(r̂) denotes an arbitrary rotationally invariant potential. We introduced the velocity operator by \documentclass[12pt]{minimal}\begin{document}$\hat{V}_k = - i [\hat{X}_k, \hat{H}]$\end{document}V̂k=−i[X̂k,Ĥ] (\documentclass[12pt]{minimal}\begin{document}$\hat{X}_k$\end{document}X̂k being the position operator), which is a NC generalization of the usual gradient operator (multiplied by −i). We found that the NC velocity operators possess various general, independent of potential, properties: (1) uncertainty relations \documentclass[12pt]{minimal}\begin{document}$[\hat{V}_i,\hat{X}_j]$\end{document}[V̂i,X̂j] indicate an existence of a natural kinetic energy cut-off, (2) commutation relations \documentclass[12pt]{minimal}\begin{document}$[\hat{V}_i,\hat{V}_j] = 0$\end{document}[V̂i,V̂j]=0, which is non-trivial in the NC case, (3) relation between \documentclass[12pt]{minimal}\begin{document}$\hat{V}^2$\end{document}V̂2 and \documentclass[12pt]{minimal}\begin{document}$\hat{H}_0$\end{document}Ĥ0 that indicates the existence of maximal velocity and confirms the kinetic energy cut-off, (4) all these results sum up in canonical (general, not depending on a particular form of the central potential) commutation relations of Euclidean group E(4) = SO(4)▷T(4), (5) Heisenberg equation for the velocity operator, relating acceleration \documentclass[12pt]{minimal}\begin{document}$\dot{\hat{V}}_k = -i[\hat{V}_k, \hat{H}]$\end{document}V̂̇k=−i[V̂k,Ĥ] to derivatives of the potential.
Read full abstract