Atmospheric residue desulfurization (ARDS) process is extensively used in upgrading of heavy petroleum oils and residues to more valuable clean environmentally friendly transportation fuels and to partially convert the residues to produce low-sulfur fuel oil and hydrotreated feedstocks. Graded catalyst systems in multiple reactors are used in the process in order to achieve hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and conversion of residues to distillates at desired levels. The characteristics of the feedstocks processed in different reactors are significantly different. The quality of the feed entering the second reactor is strongly dependent on the operating severity in the first reactor and can have an important impact on the performance of the catalysts in the following reactor with regard to various conversions and deactivation rate. In the present work, a systematic study was conducted on the effect of two industrial catalyst types, namely, MoO3/Al2O3 (HDM)...