Dongting Lake is the second largest freshwater lake in China, located in the middle reaches of the Yangtze River. Since the 21st century, it has faced intensified human activities, particularly the Three Gorges Dam impoundment and sand mining. The water quality of Dongting Lake has significantly changed due to human activities and climate change. Currently, quantitative studies on the spatial–temporal variations of total suspended matter (TSM) during Dongting Lake’s dry season and the human impacts on its concentration are lacking. This study utilizes Landsat-5 TM and Landsat-8 OLI data to estimate the changes in TSM concentration during the dry season from 1986 to 2021, analyzing their spatial–temporal variations and driving mechanisms. By evaluating the atmospheric calibration accuracy and model precision metrics, we select a model based on the ratio of red to green band, achieving an R2 of 0.84, RMSE of 18.94 mg/L, and MRE of 27.32%. Applying this model to the images, we map the distribution of the TSM concentration during the dry season from 1986 to 2021, analyzing its spatial pattern and inter-annual variation, and further investigate the impacts of natural factors and human activities on the TSM concentration. Our results show the following: (1) From 1986 to 2021, the TSM concentration during the dry season ranges from 0 to 200 mg/L of Dongting Lake, with an area-wide average value between 41.61 and 75.44 mg/L. (2) The TSM concentration from 1986 to 2021 is significantly correlated with the water level. Before 2006, it correlates positively, but no significant correlation exists from 2006 onward. (3) From 2006 onward, the mean TSM concentration is notably decreased compared to that before 2006, likely due to the Three Gorges Dam, while our analysis indicates a significant positive correlation between the TSM concentration and sand mining intensity during this period. This study highlights the influence of the Three Gorges Dam and sand mining on the TSM concentration in Dongting Lake during the dry season, providing valuable insights for related research on similar lakes.
Read full abstract