The use of composted sludge from sewage treatment plants as a soil amendment is a common practice of recycling nutrients like organic carbon, nitrogen, and phosphorus. The sewage generated in larger cities of developing countries is often contaminated with various heavy metals (HMs) that ultimately end up in composted sludge. Thus, using such composted sludge is likely to pose ecological and human health risks. Hence, the knowledge of HM translocation in sludge-soil-plant systems is of vital importance. The present study was aimed at investigating the HM translocation in sludge-soil-plant system. The HM translocation was measured using synchrotron radiation-induced x-ray fluorescence spectrometry and atomic absorption spectroscopic techniques. The results indicated high HM mobility (up to 2628.5mgkg-1) from sludge to spinach plant. The metal accumulation (mgkg-1) ranged in the order-Fe (950.55-2628.5) > Zn (20.11-172.13) > Cu (13.86-136.17) > Mn (2.13-34.67) > Cd (0.11-31.17) > Pb (1.50-30.16) > Co (0.18-9.85) As (0.02-7.80) > Cr (0.01-5.69). This observed accumulation depended on the volume of sewage being treated in the sewage treatment plant (STP) and varied in the order control < (8 MLD Bhagwanpur, STP 1) < (80 MLD Dinapur, STP2) < (140 MLD Dinapur, STP3) hence the HM load coming into STPs. The metal transfer factor, bioconcentration factor, and translocation factor values also correlated with the abundance of Fe, Cu, Pb, Cd, and Zn in spinach root and shoot compartments. The carcinogenic risk for heavy metal carcinogens like As, Cd, Cr, and Pb revealed children being more prone to cancer upon spinach consumption. Hence, it is necessary to assess the heavy metals present in the sludge prior to its application in agricultural fields.