Abstract
“Nongrain” production on cultivated land is one of the primary environmental issues in China. Different “nongrain” activities may introduce different pollution sources to the local environment, leading to variations in heavy metal contents in soil, which can profoundly impact national food security. In this study, three typical “nongrain” regions (Nanxun (NX), Xiaoshan (XS) and Lin'an (LA)) with intensive aquaculture, tea planting and flower (seedling) growth on cultivated land around the Hangzhou metropolitan area were selected to address the spatial heterogeneity of accumulation levels, sources and source-oriented health risks of heavy metals in soil. The results showed that Hg was the main pollutant in NX and XS, while Cd and As were the major contaminants in LA. Aquiculture and sericultural industries (37.43%), natural sources (23.59%) and industrial activities (38.99%) were the major sources in NX; atmospheric deposition (37.73%), flower and seedling planting (23.49%) and metal-related industries (35.16%) were the major sources in XS; and atmospheric deposition (28.06%), excessive application of fertilizers and pesticides during tea planting (43.47%) and natural sources (28.47%) were the major sources in LA. The major risk population, area, exposure route and hazardous elements were children, LA, ingestion and As and Cr, respectively. From the perspective of source-based health risk assessment, in addition to natural sources that are difficult to intervene in, industrial activities, especially leather and wood process industries, metal-related industries and excessive fertilizer and pesticide application during tea planting contributed the most to the total health risk, which explained 67%, 41% and 42%, respectively, of the total risk in NX, XS and LA. High health risks are present in sources with heavy loadings of hazardous heavy metals (As and Cr); thus, to protect human health, the corresponding high-risk anthropogenic pollution sources in different “nongrain” areas need to be controlled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.