Groundwater contamination with heavy metals is a critical environmental issue, especially in regions heavily reliant on groundwater for drinking purpose. These metals can seep into groundwater from soil and rock weathering or through improper disposal of industrial waste and effluents. Access to safe drinking water is essential for maintaining public health. This study aimed to assess heavy metal contamination in groundwater and its implications for dental and public health. The objective of the study was to measure the concentration of the heavy metals in the dentine of extracted tooth of the study population. The study concurrently measured heavy metal concentrations in groundwater and tooth dentine samples, analyzing demographic profiles, heavy metal correlations, and underlying structures using Principal Component Analysis (PCA). The average level of heavy metals in the groundwater samples varied from 9.763 ± 3.362 μg/L for Cd to 3426.204 ± 875.264 μg/L for Fe. The mean concentrations (μg/g) in teeth dentine showed significant variations, with iron (Fe) ranging from 0.149 ± 0.03 μg/g in water purifiers to 4.62 ± 0.578 μg/g in local water sources. Similar variations were observed for other heavy metals across different water sources. Principal component analysis (PCA) revealed seven principal components, with the first two components explaining 96.1% of the total variance. The findings revealed varied concentrations of heavy metals across all water sources. Statistical analyses underscored the complex relationship between water sources and heavy metal contamination levels, highlighting the need for targeted interventions to improve water quality and mitigate health risks. The study highlights the urgent need for monitoring and mitigation efforts to ensure safe drinking water and mitigate health risks associated with heavy metal contamination.
Read full abstract