Abstract

Globally, heavy metal (HM) contamination is one of the primary causes of environmental pollution leading to decreased quality of life for those affected. In particular, HM contamination in groundwater poses a serious risk to human health and the potential for destabilization of aquatic ecosystems. At present, strategies to remove HM contamination from wastewater are inefficient, costly, laborious, and often the removal poses as much risk to the environment as the initial contamination. Phytoremediation, plant-based removal of contaminants from soil or water, has long been viewed as an economical and sustainable solution to remove toxic metals from the environment. However, to date, phytoremediation has demonstrated limited successes despite a large volume of literature supporting its potential. A key aspect for achieving robust and meaningful phytoremediation is the selection of a plant species that is well suited to the task. For the removal of pollutants from wastewater, hydrophytes, like duckweed, exhibit significant potential due to their rapid growth on nutrient-rich water, ease of collection, and ability to survive in various ecosystems. As a model for ecotoxicity studies, duckweed is an ideal candidate, as it is easy to cultivate under controlled and even sterile conditions, and the rapid growth enables multi-generational studies. Similarly, recent advances in the genetic engineering and genome-editing of duckweed will enable the transition from fundamental ecotoxicity studies to engineered solutions for phytoremediation of HMs. This review will provide insight into the suitability of duckweeds for phytoremediation of HMs and strategies for engineering next-generation duckweed to provide real-world environmental solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call