The world is heading towards an era of intractable and impending untreatable N. gonorrhoeae, thereby underlining the significance of rapid and accurate prediction of drug resistance as an indispensable need of the hour. In the present study, we optimized and evaluated a stable isotope labeling-based approach using the MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry) for rapid and reliable detection of ciprofloxacin and azithromycin resistance in N. gonorrhoeae. All the isolates were cultured under three varied condition setups viz. medium supplemented with normal lysine, heavy lysine (isotope), and heavy lysine along with the antibiotics (ciprofloxacin/azithromycin), respectively. After incubation, spectra were acquired using the MALDI-TOF MS which were further screened for unique patterns (media-specific spectra) to differentiate drug-susceptible and resistant isolates. The results of the stable isotope labeling assay were comparable to the results of phenotypic methods used for susceptibility testing.