A unique, late-eluting “basic peak” (relative to the “main peak”) was observed by weak cation exchange–HPLC (WCX) for a recombinant monoclonal antibody (mAb) sample. Peak fractions were collected, desalted, and analyzed by high-resolution MS using a top-down characterization approach that provided accurate masses of intact mAb charge isoforms and a comprehensive profile of the structural heterogeneity. The individual light (L) and heavy (H) chain subunits from the main and basic peaks were analyzed by reversed-phase (RP) HPLC/MS after disulfide bond reduction and cysteine alkylation. Three mAb isoforms were detected, and their modifications were localized to H chain. Bottom-up characterization using RP–HPLC/MS peptide mapping and accurate mass measurements identified three distinct H chain C-terminal peptides ending in glycine, lysine, or α-amidated proline. The combined analyses showed that the main WCX peak mAb isoform contained two unmodified L chains and two H chains terminating in glycine. Each mAb isoform that coeluted in the basic peak consisted of two unmodified L chain subunits and a single H chain ending in glycine, but the second H chain terminated in lysine for one isoform and α-amidated proline for another isoform. The WCX elution positions of the isoforms were consistent with their respective net charge. To the best of our knowledge, the occurrence of C-terminal α-amidation in mAbs has not been reported previously.
Read full abstract