This study examines the responses of soil organic carbon (SOC) pools and their components to agricultural water drainage in paddy fields, with a focus on the wetland–paddy field ecotone of Xingkai Lake, a transboundary lake shared by China and Russia. Field investigations targeted three representative wetland vegetation types: Glyceria spiculosa (G), Phragmites australis (P), and Typha orientalis (T), across drainage durations ranging from 0 to over 50 years. SOC fractions, including light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), dissolved organic carbon (DOC), and microbial biomass carbon (MBC), were systematically analyzed. The results revealed that SOC components in T and P wetlands steadily increased with drainage duration, whereas those in G wetlands exhibited a fluctuating pattern. SOC dynamics were primarily driven by LFOC, while MBC displayed species-specific variations. Correlation analyses and structural equation modeling (SEM) demonstrated that soil physicochemical properties, such as total nitrogen and moisture content, exerted a stronger influence on SOC fractions than microbial biomass. Overall, water drawdown significantly altered SOC dynamics, with distinct responses observed across vegetation types and wetland ages. This study provides critical data and theoretical insights for optimizing carbon sequestration and hydrological management in wetland–paddy field systems.
Read full abstract