Road surface quality is essential for driver comfort and safety, making it crucial to monitor pavement conditions and detect defects in real time. However, the diversity of defects and the complexity of ambient conditions make it challenging to develop an effective and robust classification and detection algorithm. In this study, we adopted a semi-supervised learning approach to train ResNet-18 for image feature retrieval and then classification and detection of pavement defects. The resulting feature embedding vectors from image patches were retrieved, concatenated, and randomly sampled to model a multivariate normal distribution based on the only one-class training pavement image dataset. The calibration pavement image dataset was used to determine the defect score threshold based on the receiver operating characteristic curve, with the Mahalanobis distance employed as a metric to evaluate differences between normal and defect pavement images. Finally, a heatmap derived from the defect score map for the testing dataset was overlaid on the original pavement images to provide insight into the network's decisions and guide measures to improve its performance. The results demonstrate that the model's classification accuracy improved from 0.868 to 0.887 using the expanded and augmented pavement image data based on the analysis of heatmaps.
Read full abstract