Abstract Tropical instability waves (TIWs) are oceanic features that form around the equatorial Pacific cold tongue and influence the large-scale circulation and coupled climate variability including El Niño–Southern Oscillation. Local air–sea coupling over TIWs is thought to play an important role in the atmosphere and ocean’s energy and tracer budgets but is not well captured in coarse-resolution models. In this study, we isolate the impacts of TIW thermal (sea surface temperature–driven) and current (surface current–driven) feedbacks by removing TIW signatures in air–sea coupling fields in a high-resolution regional coupled model. The thermal feedback is found to damp TIW temperature variance by a factor of 2, associated both with the direct dependence of surface heat fluxes on SST (∼74%) and indirect impacts on surface winds (∼35%) and air temperature and humidity (∼−9%). These changes lead to cooling of the cold tongue SST by up to 0.1°C through reduced TIW-driven meridional heat fluxes and associated small changes in atmospheric circulation. The current feedback is decomposed into TIW (i.e., mesoscale) and mean (i.e., large-scale) components using separate experiments, with both having distinct impacts on TIWs and the mean state. The mesoscale current feedback reduces TIW eddy kinetic energy (EKE) by 22% through the eddy wind work, while the mean current feedback induces a further reduction of 8% by extracting energy from the mean currents and thus reducing barotropic EKE shear production. An improved understanding of small-scale tropical Pacific processes is needed to address biases in coarse-resolution models that impact their predictions and projections of Pacific climate variability and change. Significance Statement Tropical instability waves (TIWs) are oceanic features with ∼1000-km wavelengths that propagate westward on either side of the eastern equatorial Pacific cold tongue. TIWs drive lateral and vertical heat fluxes that impact several aspects of El Niño–Southern Oscillation. While climate models with a moderate, 1/4° ocean resolution can capture some TIW variability, they fail to properly represent many associated processes such as the impact of TIWs on the overlying atmosphere. Using sensitivity studies performed using a high-resolution regional coupled model, we study the impact of TIW air–sea coupling on the eastern Pacific climate system. Increased understanding of small-scale processes from studies such as this is essential to understand and address biases in models used for seasonal climate predictions and projections in the Pacific region.