Efficient heat dissipation methods have been the focus of battery thermal management research. Due to the limitations of flow and heat transfer in traditional straight channel cold plates (SCCP), this paper introduces a ring channel cold plate (RCCP) and utilizes the j/f factor to evaluate the comprehensive thermal performance of the cold plates. Through comparison and analysis, it is found that the RCCP has a lower pressure drop and better comprehensive thermal performance. As the mass flow rate increases, the j/f improvement effect of the RCCP becomes more pronounced. Additionally, when the branch channel width is 6 mm, the RCCP exhibits higher comprehensive thermal performance. However, in the RCCP of equal width, the innermost channels have the shortest flow path and the largest flow rate. To further enhance heat transfer, the influence of non-uniform structure on the performance of RCCP is investigated. The result shows that the narrow inside and wide outside channel arrangement can enhance the heat transfer performance of the RCCP but at the cost of increasing pressure drop. Among them, the outermost, middle, and innermost channel widths of 6.66 mm, 6 mm, and 4 mm, the cold plate has better comprehensive thermal performance, more suitable for battery thermal management. The RCCP with a narrow inside and wide outside provides a new option for more efficient battery thermal management.
Read full abstract