This paper reports the first results of an experimental study of the continuous flash pyrolysis of wood sawdust in a cyclone reactor between 893 and 1330 K. The reaction produces low fractions of char (4%) and the gasification yield increases from 0% at about 800 K to 90% at around 1330 K with a constant volume fraction of CO and H 2 (≈73%) and an increasing fraction of light hydrocarbons (up to 50% mass fraction). The heating value of the gas reaches 19 000 kJ m −3 STP for the highest temperatures. The wood particles mainly heated by radiation and solid convection react in less than 1 s while the carrier gas (residence time of the order of 0.05 s) seems to be only weakly heated. The 46.2 × 10 −6 m 3 cyclone reactor can operate with excellent stability for wood flow rates up to 0.35 kg h −1 at a wall temperature of 1330 K. The cyclone seems to be very efficient for carrying out reactions of the solid → fluids type but more accurate determination of process parameters such as gas and solid residence times and heat transfer efficiencies are required to gain a better understanding of the behaviour of such a high temperature reactor.
Read full abstract