Abstract

A recently developed variational principle of virtual dissipation along with a new approach to the thermodynamics of open systems is applied to coupled mass and heat transfer in a porous solid containing a fluid. General differential field equations are derived directly from the variational principle. A general energy flux theorem is formulated. Vapor-liquid phase transition and capillary condensation are discussed. Field equations for nonequilibrium adsorption are also obtained. Lagrangian equations with generalized coordinates are derived directly from the variational principle without use of the field equations. They provide the foundation of finite-element methods as well as of many other techniques particularly suitable in geothermal systems analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.