Nanoparticles enhances the heat transfer between particles and the fluids due to their high specific surface area and adjustable properties, including thermal conductivity and surface wettability, by varying particle volume concentrations in the base fluid to suit different applications. This article is an experimental study on the effectiveness and overall heat transfer coefficient in STHE (shell and tube heat exchanger), comprising baffle cut 25% with a nanofluid at 0.05, 0.1, and 0.2 percentage concentrations of CuO nanoparticles in the DW (distilled water) base-fluid. The inclusion of 0.15% SDBS (Sodium dodecyl-benzene sulphonate) by a two-step method as a surfactant improves the stability of dispersed CuO nanoparticles. The CuO/DW nanofluid thermo-physical properties such as thermal conductivity (k), density (ρ), and dynamic viscosity (μ), have increased. However, the nanofluid's specific heat (Cp) reduces as the nanoparticles proportion rises in the DW base fluid. There is an enhancement of the overall heat transfer coefficient and effectiveness compared to water during parallel flow variation. The maximum heat exchanger effectiveness was 3.01%, 4.01%, and 5.94% higher than water at 0.6 lpm mass flow rate and temperature T = 80 °C for volume fractions of 0.05, 0.1, and 0.2 percentage of CuO/DW nanofluid respectively during parallel flow.