Summer vegetables are severely affected by high temperature above threshold level which ultimately results in serious losses of their production. To cope with these economic losses different strategies had been adopted. The present study was designed to screen out heat tolerant genotypes of bell pepper. For this purpose, experiment was conducted in plant growth room in Institute of Horticultural Sciences, University of Agriculture Faisalabad. Ten genotypes of bell pepper (C1G3, C3G5, C7G4, V6G4, C2-E, C5G4, C43-D, C4G3, C43-A, C2G3) were brought from Ayub Agriculture Research Institute Faisalabad (AARI) and were grown. Heat treatment up to 40 ̊C was given. Data regarding agronomic traits (number of leaves, root length, shoot length, seedling dry weight, seedling fresh weight, electrolyte leakage) and physiological (Stomatal conductance, photosynthetic rate, transpiration rate and water use efficiency) was collected. Proper statistical designs were used to analyze the data. The research findings proved that heat stress significantly affected physiology, morphology and mechanisms of screened genotypes which followed the order for the heat stress as C5G4, C1G3, C2G3, C43-A, C3G5, C43-D, V6G4, C4G3, C43-A and C2G3, respectively. The collective effects of all these changes under high temperature stress resulted in poor plant growth and productivity. On the basis of physical and physiological parameters, genotypes C5G4, C1G3 and C43-A were among the most tolerant group and the most resistant genotypes.