The aim of this study was the evaluation of climate sensitivity via genomic reaction norm models [i.e., to infer cow milk production and milk fatty acid (FA) responses on temperature-humidity index (THI) alterations]. Test-day milk traits were recorded between 2010 and 2016 from 5,257 first-lactation genotyped Holstein dairy cows. The cows were kept in 16 large-scale cooperator herds, being daughters of 344 genotyped sires. The longitudinal data consisted of 47,789 test-day records for the production traits milk yield (MY), fat yield (FY), and protein yield (PY), and of 20,742 test-day records for 6 FA including C16:0, C18:0, saturated fatty acids (SFA), unsaturated fatty acids (UFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA). After quality control of the genotypic data, 41,057 SNP markers remained for genomic analyses. Meteorological data from the weather station in closest herd distance were used for the calculation of maximum hourly daily THI. Genomic reaction norm models were applied to estimate genetic parameters in a single-step approach for production traits and FA in dependency of THI at different lactation stages, and to evaluate the model stability. In a first evaluation strategy (New_sire), all phenotypic records from daughters of genotyped sires born after 2010 were masked, to mimic a validation population. In the second strategy (New_env), only daughter records of the new sires recorded in the most extreme THI classes were masked, aiming at predicting sire genomic estimated breeding values (GEBV) under heat stress conditions. Model stability was the correlation between GEBV of the new sires in the reduced data set with respective GEBV estimated from all phenotypic data. Among all test-day production traits, PY responded as the most sensitive to heat stress. As observed for the remaining production traits, genetic variances were quite stable across THI, but genetic correlations between PY from temperate climates with PY from extreme THI classes dropped to 0.68. Genetic variances in dependency of THI were very similar for C16:0 and SFA, indicating marginal climatic sensitivity. In the early lactation stage, genetic variances for C18:0, MUFA, PUFA, and UFA were significantly larger in the extreme THI classes compared with the estimates under thermoneutral conditions. For C18:0 and MUFA, PUFA, and UFA in the middle THI classes, genetic correlations in same traits from the early and the later lactation stages were lower than 0.50, indicating strong days in milk influence. Interestingly, within lactation stages, genetic correlations for C18:0 and UFA recorded at low and high THI were quite large, indicating similar genetic mechanisms under stress conditions. The model stability was improved when applying the New_env instead of New_sire strategy, especially for FA in the first stage of lactation. Results indicate moderately accurate genomic predictions for milk traits in extreme THI classes when considering phenotypic data from a broad range of remaining THI. Phenotypically, thermal stress conditions contributed to an increase of UFA, suggesting value as a heat stress biomarker. Furthermore, the quite large genetic variances for UFA at high THI suggest the consideration of UFA in selection strategies for improved heat stress resistance.
Read full abstract