Alzheimer's disease (AD) is considered a global health issue with a high social burden due to the level of disability it causes in those who suffer from it. In the absence of a therapeutic alternative for this disease, we will follow one of the biochemical pathways involved in the development of AD, which is related to molecular chaperones. The molecules are responsible for eliminating toxins and misfolded proteins at the cerebral level. These chaperones are a set of proteins from the heat shock proteins (HSPs) family, which, among their functions, help maintain homeostasis and protect cells against stress. Various authors have described the activity of HSPs in different neurodegenerative diseases, highlighting the activity of heat shock protein 70 (HSP70) in the presence of aberrant proteins characteristic of neurodegeneration, such as amyloid-β (Aβ) and tau. The role of HSP70 in AD and other dementias lies in its mechanism, which, along with other proteins from the HSP family, has the capacity to eliminate Aβ aggregates by promoting catalytic pathways. In this review, we explore the biological role of the HSP70 protein in AD and other dementias and its potential therapeutic use
Read full abstract