The adhesive ability of a heat-resistant polyiminoquinazolindione (PIQD) binder, based on a double-chain polymer, and the physicomechanical characteristics of unidirectional CFRPs made with it are investigated. It is shown that, at room temperature, the strength of model adhesive joints (PIQD-steel wire) and of the CFRPs in shear and bending is rather low — about half of that of similar specimens based on an epoxy binder. At the same time, all their mechanical characteristics, to a large measure (50%), are retained at temperatures up to 450°C, which considerably exceeds the heat resistance of all polymer matrices used at the present time. The elastic modulus of the CFRPs in bending practically remains the same up to 450°C.