Traditional text-based system engineering, which has been used in the design and application of passive residual heat removal system (PRHRS) for lead-cooled fast reactors, is prone to several problems such as low development efficiency, long iteration cycles, and model ambiguity. This study aims to effectively address the above-mentioned problems by adopting a model-based system engineering (MBSE) method, which has been preliminarily applied to meet the design requirements of a PRHRS. The design process has been implemented based on the preliminary design of the system architecture and consists of three stages: top-level requirement analysis, functional requirements analysis, and design requirements synthesis. The results of the top-level requirements analysis and the corresponding use case diagram can determine the requirements, top-level use cases, and scenario flow of the system. During the functional requirements analysis, the sequence, activity, and state machine diagrams are used to develop the system function model and provide early confirmation. By comparing these sequence diagrams, the requirements for omissions and inconsistencies can be effectively checked. In the design requirements synthesis stage, the Analytic Hierarchy Process is used to conduct preliminary trade-off calculations on the system architecture, after which a white box model is established during the system architecture design. Through these two steps, the analysis and design of the system architecture are ultimately achieved. The resulting system architecture ensures the consistency of the design requirements. Ultimately, a functional hazard analysis was conducted for a specific incident to validate case requirements and further refine the system architecture. Future research can further reduce the design risk, improve the design efficiency, and provide a practical reference for the design and optimization of PRHRS in digital lead-cooled fast reactors.
Read full abstract