Chilled water storage offers a cost-effective and convenient solution for load flexibility of air-conditioning systems. However, its impacts on system flexibility and energy efficiency have not been comprehensively explored. In this paper, demand response (DR) potential delivered by chilled water storage was explored and predicted through both experimental and simulation studies. The initial experimental investigation focused on the DR potential at various cold charging and discharging proportions of chilled water storage. Subsequently, a virtual platform, validated through experimental data, was utilized to analyze load flexibility and energy efficiency of the system across different baseline loads, storage characteristics, and heat pump characteristics. Prediction models for DR potential in different cold charging and discharging scenarios were further developed based on the simulation results. The experimental and simulation results demonstrated effective load manage performance through adjusting charging and discharging proportions, even though the flexibility may sacrifice energy efficiency in cold discharging scenarios. In addition, the developed prediction models confirmed their feasibility with the coefficient of determination (R2) exceeding 0.80 in charging scenarios and 0.90 in discharging scenarios. The analysis also revealed significant benefits from storing supply water at lower temperatures and selecting heat pumps with partial-load efficiency curves characterized by higher Pearson Correlation Coefficients.
Read full abstract