By the year 2000, microturbines in the 25–75 kW power range are projected to find acceptance in large quantities in the distributed power generation field, their major attributes include low emissions, multifuel capability, compact size, high reliability and low maintenance. For this type of small turbogenerator, an exhaust heat recovery recuperator is mandatory in order to realize a thermal efficiency of 30% or higher. The paramount requirements for the recuperator are low cost and high effectiveness. These characteristics must be accomplished with a heat exchanger that has good reliability, high performance potential, compact size, light weight, proven structural integrity, and adaptability to automated high volume production methods. In this paper, a recuperator concept is discussed that meets the demanding requirements for microturbines. The proposed stamped and folded metal foil primary surface recuperator concept has as its genesis, a prototype heat exchanger module that was fabricated as part of an energy research program in Germany over two decades ago. This novel heat exchanger approach was clearly ahead of its time, and lacking an application in the late 1970s was, alas, not pursued and commercialized. Based on this earlier work, a further evolution of the basic concept is proposed, with emphasis placed on the following: (1) minimization of the number of parts, (2) use of a continuous fabrication process, (3) matrix overall shape and envelope flexibility (annular or platular geometry), (4) ease of turbogenerator/recuperator integration, and (5) a later embodiment of a bi-metallic approach, towards the goal of establishing a compact and cost-effective recuperator for the new class of very small gas turbines that are close to entering service. For a representative microturbine, an annular recuperator would have only five basic parts. The matrix cartridge would be essentially a plug-in component, analogous to an automobile oil filter element. In this paper, the important role that the recuperator has on turbogenerator performance is discussed, together with a summary of the early prototype heat exchanger development. The major requirements, features and cost goals for a compact primary surface recuperator for microturbine service, are also covered.
Read full abstract