The escalating challenge of waste management demands innovative strategies to mitigate environmental impacts and harness valuable resources. This study investigates waste-to-energy (WtE) technologies for municipal waste management in Kočevje, Slovenia. An analysis of available waste streams reveals substantial energy potential from mixed municipal waste, biodegradable waste, and livestock manure. Various WtE technologies, including incineration, pyrolysis, gasification, and anaerobic digestion, are compared. The results show that processing mixed municipal waste using thermochemical processes could annually yield up to 0.98 GWh of electricity, and, separately, 3.22 GWh of useable waste heat for district heating or industrial applications. Furthermore, by treating 90% of the biodegradable waste, up to 1.31 GWh of electricity and 1.76 GWh of usable waste heat could be generated annually from biodegradable municipal waste and livestock manure using anaerobic digestion and biogas combustion in a combined heat and power facility. Gasification coupled with a gas-turbine-based combined heat and power cycle is suggested as optimal. Integration of WtE technologies could yield 2.29 GWh of electricity and 3.55 GWh of useable waste heat annually, representing an annual exergy yield of 2.98 GWh. Within the Kočevje municipality, this amount of energy could cover 23.6% of the annual household electricity needs and cover the annual space and water heating requirements of 10.0% of households with district heating. Additionally, CO2-eq. emissions could be reduced by up to 20%, while further offsetting emissions associated with electricity and district heat generation by 1907 tons annually. These findings highlight the potential of WtE technologies to enhance municipal self-sustainability and reduce landfill waste.