The thermal and dynamic behavior of SiO2 nanofluid was studied in a rectangular lid-driven cavity using the finite difference method. A non-adiabatic lid and a hot section at the bottom wall were considered in different heating and cooling cases. Three novel study cases were studied: a standard temperature at Th (heat conduction through the left-side walls), a high hot temperature, 2Th (heat conduction through the left-side walls), and a 2Tc high cold temperature (heat conduction through right-side walls). The Richardson number was varied between 10 and 100, and the lid direction. With a Richardson number of 10, the streamlines in the different cases tended to the formation of a central vortex with small vortices on the side walls, and the isotherms tended to a central one near the lower wall’s heated section and the homogenized temperature in the center of the cavity. At a Richardson number of 100, the streamlines produced a division in the cavity through a central vortex due to the heating of the bottom wall; this affected the isotherms, generating a prominent one in the center of the cavity and others near it. The generating decreased in the temperature near the bottom and top walls but increased in the middle of the cavity. The standard temperature case tended to behave similarly to the high cold temperature case but presented different temperatures, while the high hot temperature case generally maintained a slightly different behavior. These effects were more noticeable with the lid direction opposite X.
Read full abstract