Balsam fir trees established from advanced regeneration following a clear-cut in 1970 were pruned in June 1985 to live crown ratios of 0.6, 0.4, and 0.2 compared with control trees, which had live crown ratios of 0.8. After two growing seasons, we investigated the homeostatic adjustment of these trees to the loss of their foliage. The height growth, basal area growth, sapwood cross-sectional area, heartwood area, and sapwood saturated permeability of the trees that were pruned to a 0.6 live crown ratio were not significantly different from those of the controls. On the other hand, height growth increment following pruning was reduced 16.7 cm (23%) and 19.5 cm (27%) for the trees pruned to 0.4 and 0.2 live crown ratios, respectively. Furthermore, basal area growth following pruning was reduced 3.2 cm2 (30%) and 6.5 cm2 (61%), respectively. While trees in both the 0.4 and 0.2 live crown ratio pruning treatments did adjust their breast height sapwood area in response to the removal of foliage, the nature of this adjustment differed between the two treatments. For the trees with the 0.4 live crown ratio, sapwood area was reduced because of a reduction in basal area growth but the area of heartwood remained unchanged. For the trees with the 0.2 live crown ratio, the changes in sapwood area were due both to a reduction in basal area growth and an expansion of the heartwood. The saturated permeability of sapwood was not significantly affected by pruning. The adaptive implications of balsam fir's response to the loss of foliage are discussed in terms of the optimizing the allocation of a limited amount of available carbon.
Read full abstract