The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts. The COX activity increased upon Cyt D exposure, whereas hypoxia lowered COX and SDH activities but increased LDH activity. The ROS increased, and NO decreased by Cyt D. COX and LDH activities, and NO content reversed after Cyt D exposure in hypoxic hearts. Cyt D exposure upregulated actin isoform expression (Actc1 and Actb1) but downregulated tubulin isoform (Tedc1). Hypoxia upregulated actin (Acta1a, Actb1, Actb2, Actc1a) tubulin (Tuba, Tubb5, Tedc1, Tubd1) and hsp (Hspa5, Hspa9, Hspa12a, Hspa14, Hspd1, Hsp90) isoform transcript expression and Cyt D in hypoxic hearts reversed these isoform's expression. Hypoxia upregulated Mmp2 and 9 transcript expressions but downregulated Mfn1, Fis1, Nfkb1, Prkacaa, and Aktip expressions, and Cyt D exposure reversed almost all these markers in hypoxic hearts. The data provide novel evidence for the mechanistic role of actin in integrating mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity, indicating its critical cardioprotective role in defending against hypoxia. Besides proposing an air-breathing fish heart as a model, the study further brings the therapeutic potential of Cyt D towards hypoxia intervention.
Read full abstract