With the advancements in ocular biometric technology, there have been significant improvements in accurately and efficiently measuring ocular parameters. The aim of this study is to compare the reliability of biometric parameters obtained using a new frequency-domain optical coherence tomography (SD-OCT) biometer with the measurements obtained from swept-source OCT (SS-OCT) and optical low coherence reflectometry (OLCR) biometers. This study employed an observational cross-sectional design. Measurements of axial length (AL), flat and steep corneal keratometry (K1 and K2), and central corneal thickness (CCT) obtained using the The Colombo IOL were compared with those obtained with the IOLMaster 700 and SW-9000 devices. The agreement were evaluated using intraclass correlation coefficient (ICC) and Bland–Altman analyses. The differences of the measurements of the three increments were assessed by one-way ANONA. 73 right eyes of 73 healthy pediatric subjects were analyzed. The AL difference measured by Colombo IOL compared with IOLmaster700 and SW-9000 were 0.00 ± 0.02 mm and − 0.07 ± 0.05 mm, respectively (P > 0.05, ANOVA). There was no statistically significant difference in CCT, K1, and K2 among the three instruments (all P > 0.05, ANOVA). The ICC values for AL, K1, K2, and CCT were 0.999, 0.996, 0.995, and 0.998, respectively. The Bland-Altman analysis showed an agreement of AL, K1, K2, and CCT with Colombo IOL and IOLMaster 700 spanned over 0.08 mm, 0.71D, 0.69D, and 12.17 μm, respectively. The agreement of AL, K1, K2, and CCT with Colombo IOL and SW-9000 spanned approximate 0.21 mm, 0.75D, 1.06D, and 14.37 μm, respectively. The new SD-OCT biometer and the SS-OCT biometer showed strong agreement in measuring AL and CCT in healthy pediatric subjects. This supports the reliability of the new SD-OCT biometer as an alternative for assessing these parameters. However, K1 and K2 could not be used interchangeably in clinical practice. Further research is needed to explore their applicability in different clinical settings and patient populations."light" />
Read full abstract