Indoor air quality (IAQ) and indoor air pollution are critical issues impacting urban environments, significantly affecting the quality of life. Nowadays, poor IAQ is linked to respiratory and cardiovascular diseases, allergic reactions, and cognitive impairments, particularly in settings like classrooms. Thus, this study investigates the impact of indoor environmental quality on student health in a university classroom over a year, using various sensors to measure 19 environmental parameters, including temperature, relative humidity, CO2, CO, volatile organic compounds (VOCs), particulate matter (PM), and other pollutants. Thus, the aim of the study is to analyze the implications of the indoor microclimate for the health of individuals working in the classroom, as well as its implications for educational outcomes. The data revealed frequent exceedances of international standards for formaldehyde (HCHO), VOC, PM2.5, NO, and NO2. HCHO and VOCs levels, often originating from building materials and classroom activities, were notably high. PM2.5 levels exceeded both annual and daily standards, while NO and NO2 levels, possibly influenced by inadequate ventilation, also surpassed recommended limits. Even though there were numerous exceedances of current international standards, the indoor microclimate quality index (IMQI) score indicated a generally good indoor environment, remaining mostly between 0 and 50 for this indicator. Additionally, analyses indicate a high probability that some indicators will exceed the current standards, and their values are expected to trend upwards in the future. The study highlighted the need for better ventilation and pollutant control in classrooms to ensure a healthy learning environment. Frequent exceedances of pollutant standards can suggest a significant impact on student health and academic performance. Thus, the present study underscored the importance of continuous monitoring and proactive measures to maintain optimal indoor air quality.
Read full abstract