Simple SummaryDetailed knowledge of the structure and properties of the human cornea is a prerequisite not only for the treatment of various corneal diseases but also for successful corneal transplantation and its long-term survival after grafting. Using various cell and molecular biology approaches, we found in cornea the protease inhibitor 9. This protein, known to be present in other human tissues but not yet reported in cornea, is directly involved in the immune response after transplantation. Together with its inhibitor (granzyme B), we localized this protein, especially in the superficial and inner cornea layers. This localization indicates that protease inhibitor 9 protein may be involved in protecting the cornea from external damage, but also in protection against immune cells inducing corneal graft rejection. Furthermore, we have shown on pathological corneal samples from corneal melting and herpes virus keratitis that the increased expression of both proteins is linked to these diseases. These experiments and their results represent an important contribution to the basic research of cornea biological properties with direct overlap into clinical practice.The aim of this study was to find out whether protease inhibitor 9 (PI-9) and granzyme B (GrB) molecules that contribute to immune response and the immunological privilege of various tissues are expressed in healthy and pathological human corneas. Using cryosections, cell imprints of control corneoscleral discs, we showed that PI-9 was expressed particularly in the endothelium, the superficial and suprabasal epithelium of healthy corneas, limbus, and conjunctiva. GrB was localized in healthy corneal and conjunctival epithelium, while the endothelium showed weak immunostaining. The expression of PI-6 and GrB was confirmed by qRT-PCR. Increased expression levels of the PI-9 and GrB genes were determined when the corneas were cultured with proinflammatory cytokines. Fluorescent and enzymatic immunohistochemistry of pathological corneal explants (corneal melting and herpes virus keratitis) showed pronounced PI-9, GrB, human leucocyte antigen (HLA)-DR, and leukocyte-common antigen (CD45) signals localized in multicellular stromal infiltrates and inflammatory cells scattered in the corneal stroma. We conclude that increased expression of the PI-9 and GrB proteins under pathological conditions and their upregulation in an inflammatory environment indicate their participation in immune response of the cornea during the inflammatory process.
Read full abstract