Abstract

The trade-off between transverse resolution and depth-of-focus (DOF) typical for optical coherence tomography (OCT) systems based on conventional optics, prevents "single-shot" acquisition of volumetric OCT images with sustained high transverse resolution over the entire imaging depth. Computational approaches for correcting defocus and higher order aberrations in OCT images developed in the past require highly stable phase data, which poses a significant technological challenge. Here, we present an alternative computational approach to sharpening OCT images and reducing speckle noise, based on intensity OCT data. The novel algorithm uses non-local priors to model correlated speckle noise within a maximum a posteriori framework to generate sharp and noise-free images. The performance of the algorithm was tested on images of plant tissue (cucumber) and in-vivo healthy human cornea, acquired with line-field spectral domain OCT (LF-SD-OCT) systems. The novel algorithm effectively suppressed speckle noise and sharpened or recovered morphological features in the OCT images for depths up to 13×DOF (depth-of-focus) relative to the focal plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.