While models of host-parasite interactions are widespread in the theoretical literature, we still have limited understanding of the impact of community dynamics on infectious disease dynamics. When the wider host ecology is taken into account, the underlying inter-species feedbacks can lead to counter-intuitive results. For example, the 'healthy herd' hypothesis posits that the removal of a predator species may not be beneficial for a prey population infected by an endemic disease. In this work, we focus on the effects of including a predator species in a susceptible-infected-susceptible model. Specifically, a key role is played by predator selectivity for either healthy or infected prey. We explored both cases and found important differences in the asymptotic behaviours of the system. Independently from selectivity, large portions of parameter space allow for the coexistence of the three species. However, when predators feed mainly on susceptible prey we find that a fold bifurcation can occur, leading to a region of bi-stability between coexistence and parasite extinction. Conversely, when predator selection is strongly towards infected prey, total prey population density can be maximal when the three species coexist, consistent with the 'healthy herd' hypothesis. Our work further highlights the importance of community interactions to infectious disease dynamics.