We conducted a study to assess the pressure difference between the aqueous and vitreous humors in rabbit eyes using a direct intraocular pressure (IOP) measurement method. A micro-optic-fiber pressure sensor was utilized for this purpose. Preliminary experiments with enucleated porcine eyes confirmed the sensor's accuracy in measuring both aqueous and vitreous humor pressure. The main study involved six healthy albino rabbits, where the sensor measured the pressure in the anterior chamber (aIOP) and posterior vitreous-cavity (pIOP). These measurements were compared to aIOP values obtained through rebound tonometry. Additionally, pre- and postoperative pressure comparisons were made after performing a vitrectomy. Results revealed a significant disparity between aqueous and vitreous humor pressures. Prior to vitrectomy, pIOP was 22.8 mmHg, over twice as high as aIOP (11.0 mmHg), but decreased to a similar level following the procedure. Comparison between the sensor measurements and rebound tonometry showed agreement in aIOP values. In conclusion, our study demonstrates that vitreous humor pressure is consistently higher than aqueous humor pressure, reaching the upper limit of normal IOP. Furthermore, vitrectomy effectively reduces pIOP, aligning it with aIOP. These findings contribute valuable insights into intraocular pressure dynamics and have implications for clinical interventions targeting ocular pressure regulation.