Lung cancer is one of the most common types of cancer in the United Kingdom. It is often diagnosed late. The 5-year survival rate for lung cancer is below 10%. Early diagnosis may improve survival. Software that has an artificial intelligence-developed algorithm might be useful in assisting with the identification of suspected lung cancer. This review sought to identify evidence on adjunct artificial intelligence software for analysing chest X-rays for suspected lung cancer, and to develop a conceptual cost-effectiveness model to inform discussion of what would be required to develop a fully executable cost-effectiveness model for future economic evaluation. The data sources were MEDLINE All, EMBASE, Cochrane Database of Systematic Reviews, Cochrane CENTRAL, Epistemonikos, ACM Digital Library, World Health Organization International Clinical Trials Registry Platform, clinical experts, Tufts Cost-Effectiveness Analysis Registry, company submissions and clinical experts. Searches were conducted from 25 November 2022 to 18 January 2023. Rapid evidence synthesis methods were employed. Data from companies were scrutinised. The eligibility criteria were (1) primary care populations referred for chest X-ray due to symptoms suggestive of lung cancer or reasons unrelated to lung cancer; (2) study designs that compared radiology specialist assessing chest X-ray with adjunct artificial intelligence software versus radiology specialists alone and (3) outcomes relating to test accuracy, practical implications of using artificial intelligence software and patient-related outcomes. A conceptual decision-analytic model was developed to inform a potential full cost-effectiveness evaluation of adjunct artificial intelligence software for analysing chest X-ray images to identify suspected lung cancer. None of the studies identified in the searches or submitted by the companies met the inclusion criteria of the review. Contextual information from six studies that did not meet the inclusion criteria provided some evidence that sensitivity for lung cancer detection (but not nodule detection) might be higher when chest X-rays are interpreted by radiology specialists in combination with artificial intelligence software than when they are interpreted by radiology specialists alone. No significant differences were observed for specificity, positive predictive value or number of cancers detected. None of the six studies provided evidence on the clinical effectiveness of adjunct artificial intelligence software. The conceptual model highlighted a paucity of input data along the course of the diagnostic pathway and identified key assumptions required for evidence linkage. This review employed rapid evidence synthesis methods. This included only one reviewer conducting all elements of the review, and targeted searches that were conducted in English only. No eligible studies were identified. There is currently no evidence applicable to this review on the use of adjunct artificial intelligence software for the detection of suspected lung cancer on chest X-ray in either people referred from primary care with symptoms of lung cancer or people referred from primary care for other reasons. Future research is required to understand the accuracy of adjunct artificial intelligence software to detect lung nodules and cancers, as well as its impact on clinical decision-making and patient outcomes. Research generating key input parameters for the conceptual model will enable refinement of the model structure, and conversion to a full working model, to analyse the cost-effectiveness of artificial intelligence software for this indication. This study is registered as PROSPERO CRD42023384164. This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135755) and is published in full in Health Technology Assessment; Vol. 28, No. 50. See the NIHR Funding and Awards website for further award information.