Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17–108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers.
Read full abstract