The growing concern about air quality and its influence on human health has prompted the development of sophisticated monitoring and forecast systems. This article gives a thorough investigation into forecasting the air quality index (AQI) with an Internet of Things (IoT) device that analyzes temperature, humidity, PM10, and PM2.5 levels. The dataset used for this analysis comprises 5869 data points across six critical parameters essential for accurate air quality prediction. The data from these sensors is sent to the ThingSpeak cloud platform for storage and preliminary analysis. The system forecasts AQI using a TensorFlow-based regression model, delivering real-time insights. The combination of IoT technology and machine learning improves the accuracy and responsiveness of air quality monitoring systems, making it a useful tool for environmental management and public health protection. This work presents comparatively the effectiveness of feedforward neural network models trained with the ‘adam’ and ‘RMSprop’ optimizers over different epochs, as well as the machine learning algorithm random forest with varying numbers of estimators to forecast AQI. The models were trained using both types of regression analysis: linear regression and random forest regression. The findings show that the model achieves a high degree of accuracy, with the predictions closely aligning with the actual AQI values, thus having the potential to significantly reduce the negative health impact associated with poor air quality, protecting public health and alerting users when pollution levels are higher than allowed. Specifically, the random forest model with 100 estimators delivers the best overall performance for both AQI 10 and AQI 2.5, achieving the lowest Mean Absolute Error (MAE) of 0.2785 for AQI 10 and 0.2483 for AQI 2.5. This integration of IoT technology and advanced predictive analysis addresses the significant worldwide issue of air pollution by identifying the pollution hotspots and allowing decision-makers for quick reactions, and the development of effective strategies to reduce pollution sources.
Read full abstract