Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve the above issues in detail, our study was conducted with a control group (C group), a low-dose canthaxanthin group (L group), and a high-dose canthaxanthin group (H group), each fed for a period of 40 days. Production performance was monitored during the experiment, in which L and H groups showed a significant increase in ADFI. Eggs were collected for quality analysis, revealing no significant differences in qualities except for yolk color (YC). The YC of the C group almost did not change, ranging from 6.08 to 6.20; however, the trend in YC change in other groups showed an initial intense increase, followed by a decrease, and eventually reached dynamic equilibrium. By detecting the content of canthaxanthin in the yolk, the YC change trend was found to be correlated with canthaxanthin levels in the yolk. The content of unsaturated fatty acid increased slightly in L and H groups. Following the incubation period, the physical characteristics and blood biochemical indices of chicks were evaluated. It was observed that the shank color of chicks in the L and H groups was significantly higher than that in the C group at birth. However, by the 35th day, there were no significant differences in shank color among the three groups. Further investigation into the metabolic mechanism involving canthaxanthin revealed that the substance underwent incomplete metabolism upon entering the body, resulting in its accumulation as well as metabolic by-product accumulation in the yolk. In summary, this study highlighted the importance of understanding canthaxanthin's role in production performance, egg quality, and offspring health, providing valuable insights for breeders to optimize feeding strategies.