A dramatic population growth is projected for the least developed countries of the world (United Nations 2013), which will also suffer disproportionally from ongoing and predicted climate disruptions (IPCC 2013). More frequently occurring extreme weather events have led to yield losses and decreasing cattle populations—aggravating an already precarious situation and leading to critical food shortages. Food security is a function of food availability, food accessibility, food stability and food utilisation (FAO 2002; Ziervogel and Ericksen 2010). Climate change and population growth are seen as key drivers of food insecurity severely affecting farming systems (Muller et al. 2011; Haberl et al. 2011, Strengers et al. 2010), as well as the global energy demand and therefore induced biofuel production (Von Braun 2007a), changing trade patterns through liberalisation and globalisation (Von Braun 2007b; Lotze-Campen et al. 2010), and the state of health of the population (10–20 % AIDS rate in East Africa). Cause– effect chains, in which food security is involved (droughts– diseases–health–human capital), are also drivers over large regions (Ziervogel and Ericksen 2010). Most of these drivers do not only lead to a productivity decline, but also often result in a degraded natural resource base and declining soil fertility (Graef et al. 2000). Rapidly changing framework conditions (Muller 2011) require a thorough understanding of integrated food systems and targeted incorporation of region-specific innovations. However, creating a sustainable road map for the future is a huge challenge for a variety of reasons. Mainly rainfed, subsistence-oriented smallholder farming systems are not only extremely vulnerable to a changing and unpredictable climate, but often also lack access to external inputs, institutional support and adaptive capacity. Moreover, food insecurity is often regarded as insufficient food availability which is only part of the picture. Instead of solely focussing on boosting crop yields, the highly complex state of vulnerability needs to be addressed encompassing economic and sociopolitical factors (Misselhorn 2004; Pretty et al. 2006). Also, increased bioenergy production has fuelled land use conflicts and lead to largescale deforestation due to the growing international demand for biofuels. Biomass is still the primary source of energy in developing countries—important for income, energy supply, poverty reduction and self-sufficiency of rural communities (Harvey and Pilgrim 2011; Mitchell 2011; Tilman et al. 2009). Effective climate change adaptation and food security intervention strategies need to pursue a holistic approach and an array of objectives: social and economic viability, soil health, minimum use of scarce water and fossil energy, affordable and low external inputs, improvement in infrastructure and market access, as well as conservation of natural resources and biodiversity. To achieve positive impacts and sustainable solutions, international research projects increasingly focus on integrated in-depth analysis of the food system itself and its core elements: (a) natural and human resources, (b) the use of Disclaimer The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.
Read full abstract