Reclaimed asphalt pavement (RAP) has been widely utilized because it is an environmentally friendly and economical material. The performance of recycled asphalt mixtures will deteriorate gradually with the secondary aging process of asphalt, including the self-healing property. To further understand the self-healing characteristics of asphalt after secondary aging, taking 70# petroleum asphalt, SBS-modified asphalt, and extracted old asphalt mastics as objects, the fatigue self-healing test and fracture self-healing test were conducted to simulate the intermediate-and low-temperature healing behaviors of different asphalt mastics. The impact of healing time, healing temperature, and aging degree of mastics on the healing performance was systematically investigated. The results show that the original unaged asphalt mastics present excellent fatigue healing properties with an index of 0.796 and 0.888 for 70# petroleum and SBS-modified asphalt mastics, respectively. The secondary aging process causes significant impact on the healing properties, leading to a great drop in the corresponding index, which decreased to 47.5% and 72.5% of that of the unaged ones. The fracture healing ability of all mastics was much inferior to the fatigue healing. After secondary aging, the fracture healing index values of 70# petroleum asphalt, SBS-modified asphalt, and extracted old asphalt mastics were all as low as around 0.3, indicating similar performance can be found in the secondary aged SBS-modified asphalt mastics and 70# asphalt mastics. Overall, after secondary aging, the fatigue damage of SBS-modified asphalt mastics can be cured effectively by self-healing, but the fatigue and fracture self-healing properties of 70# asphalt mastics are difficult to recover. These results could provide an innovative view to understand the fatigue and fracture healing characteristics of recycled asphalt pavement after secondary aging.
Read full abstract