Older adults (aged ≥65 years) show increased susceptibility to severe disease with influenza virus infection, accounting for 70-85% of annual influenza-related fatalities in the USA. Stimulating mucosal antibodies and T cells might enhance the low vaccine effectiveness seen in older adults for currently licensed inactivated influenza vaccines, which induce mainly serum antibodies. We aimed to evaluate the safety and immunogenicity of the intranasal H3N2 M2-deficient single-replication (M2SR) vaccine, alone or coadministered with a licensed inactivated influenza vaccine (Fluzone High-Dose Quadrivalent; hereafter referred to as Fluzone HD), in older adults. In this multicentre, randomised, double-blind, double-dummy, phase 1b trial, individuals aged 65-85 years who were considered healthy or with stable chronic conditions with no recent (<6 months) influenza vaccinations were recruited from five clinical trial sites in the USA and randomly assigned (3:3:3:1) using a permuted block design to receive the H3N2 M2SR vaccine and Fluzone HD, the H3N2 M2SR vaccine and placebo, Fluzone HD and placebo, or placebo alone. All participants received a single intranasal spray and a single intramuscular injection, whether active or placebo, to maintain masking. The primary outcome was to assess the safety of H3N2 M2SR, administered alone or with Fluzone HD, in the safety analysis set, which included all participants who were randomly assigned and received treatment. Serum and mucosal antibodies were assessed as a secondary endpoint, and cell-mediated immunity as an exploratory endpoint, in participants in the per-protocol population, which included individuals in the safety analysis set without major protocol deviations. This trial is registered with ClinicalTrials.gov, NCT05163847. Between June 14 and Sept 15, 2022, 305 participants were enrolled and randomly assigned to receive the H3N2 M2SR vaccine plus placebo (n=89), H3N2 M2SR vaccine plus Fluzone HD (n=94), Fluzone HD plus placebo (n=92), or placebo alone (n=30). All randomly assigned participants were included in the safety analysis set. The most frequently reported local symptoms up to day 8 in groups that received M2SR were rhinorrhoea (43% [38 of 89] in the H3N2 M2SR plus placebo group and 38% [36 of 94] in the H3N2 M2SR plus Fluzone HD group), nasal congestion (51% [45 of 89] and 35% [33 of 94]), and injection-site pain (8% [seven of 89] and 49% [46 of 94]), and the most frequently reported solicited systemic symptoms were sore throat (28% [25 of 89]) for M2SR and decreased activity (26% [24 of 94]) for the M2SR plus Fluzone HD group. In the Fluzone HD plus placebo group, the most frequently reported local symptom was injection-site pain (48% [44 of 92]) and systemic symptom was muscle aches (22% [20 of 92]). The frequency of participants with any treatment-emergent adverse event related to vaccination was low across all groups (2-5%). One serious adverse event was reported, in a participant in the Fluzone HD plus placebo group. M2SR with Fluzone HD induced seroconversion (≥four-fold increase in haemagglutination inhibition antibodies from baseline to day 29) in 44 (48%) of 91 participants, compared with 28 (31%) of 90 participants who seroconverted in the Fluzone HD plus placebo group (p=0·023). M2SR with Fluzone HD also induced mucosal and cellular immune responses. The H3N2 M2SR vaccine coadministered with Fluzone HD in older adults was well tolerated and provided enhanced immunogenicity compared with Fluzone HD administered alone, suggesting potential for improved efficacy of influenza vaccination in this age group. Additional studies are planned to assess efficacy. US Department of Defense.
Read full abstract