The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.