The effect of Lanthanides-doping on the structural, optical, morphological, antibacterial and anticancer properties of zinc oxide (ZnO) nanoparticles was investigated. Pure ZnO, Zn0.9La0.1O, Zn0.9Ce0.1O, and Zn0.9La0.05Ce0.05O were fabricated through the chemical co-precipitation route. The structural and morphological properties were studied using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The optical properties were analyzed by photoluminescence spectroscopy (PL). The inhibitory effect of the synthesized nanoparticles (NPs) was assessed against six bacterial strains using the agar well diffusion and broth micro-dilution methods. The anticancer potential of the synthesized NPs was assessed against two human colon cancer cell lines Caco-2 and HCT-116. The appearance of the La2O3 and CeO2 secondary phases upon doping La3+ and Ce3+ ions induced structural and morphological changes. The large distorted hexagonal morphology of pure ZnO is transformed into small sized distorted hexagonal form. The photoluminescence spectra revealed the point defects resulting from Lanthanum (La) and cerium (Ce) doping. The prepared NPs significantly inhibited the growth of the six investigated bacteria and induced cytotoxic effects and morphological changes against Caco-2 and HCT-116 cell lines. This study showed that doping ZnO with lanthanide ions such as La3+ and Ce3+ provide promising biological applications. These NPs showed a potent antibacterial and anticancer effect towards the investigated bacterial strains and colon cancer cell lines. These findings point to the importance of the biological applications of NPs, and the possibility of investigating other biomedical applications for NPs.