Agricultural soils have relied on the application of fertilizers to enhance soil fertility and yields in response to increasing food demands. However, the potentially hazardous trace elements that accumulate in soils have been largely overlooked. In this study, we set out to determine the soil factor indicators in croplands using Exploratory Factor Analysis to illuminate the trade-off between surplus soil nutrients and cadmium (Cd) accumulation as a result of fertilizer application. The research in northeastern China highlights the fact that studies tend to ignore the accumulation and distribution of hazardous heavy metals in production fields in favor of an over-emphasis on soil fertility indicators; an ultimately unsustainable approach. The model showed that soil nutrient could be identified based on three soil factors: soil organic matter, soil available nutrients, and soil nutrient buffer structures. Fertilization enhanced the level of available nutrients and significantly increased both soil organic matter and available phosphorus by 0.71 % and 11 mg kg−1, respectively. However, the long-term application of phosphorus (P) leads to a P-surplus and leaves soils more susceptible to Cd accumulation. The 90th percentile estimate of soil Cd concentration was 1.4 times higher than the P-optimal level. Scenario analyses of long-term fertilizer management indicated that, over a 50-year simulation period, the impact of Cd accumulation in soils in traditional agriculture was insignificant. However, prolonged application of excess P-fertilizer would lead to a continuous increase in the concentration of accumulated Cd from 0.17 mg kg−1 to 0.40 mg kg−1. Trade-off and scenario analyses guide agricultural fertilization practices to preserve soil quality while sustaining productivity.
Read full abstract