Air pollution from residential wood heating (RWH) presents challenges at the intersection of climate and public health. With a revised National Ambient Air Quality Standard (NAAQS, at 9 μg/m3) for particulate matter (PM) in the United States (U.S.), the Environmental Protection Agency (EPA) will likely classify new non-attainment areas due primarily to emissions from RWH. Agencies will use emissions factors (EFs) to develop attainment strategies. Many will rely on EPA modeling platforms based on data from the National Emissions Inventory (NEI). The NEI uses RWH EFs based on data from mid-1990's in-situ studies and a speciation profile from a 2001 study of fireplace emissions. The NEI does not include greenhouse gas (GHG) emissions for this sector, which plays a key role when assessing climate reduction strategies for the buildings sector. Here, we tested seven wood stoves to determine EFs, representing various vintages and control technologies, using a novel test method that reflects in-use operational settings called the Integrated Duty Cycle. The study measured multiple pollutants concurrently: criteria pollutants (particulate matter [PM], CO, and NOx), nonmethane total hydrocarbons (NMTHCs), GHGs, black carbon (eBC), brown carbon (BrC), and multiple hazardous air pollutants (HAPs). We found no significant difference in PM EFs between uncertified and non-catalytic stove technologies. RWH EF results from this study exceeded 2020 NEI RWH EFs for NMTHC and multiple HAPs. Applying our study's EFs to the 2020 NEI suggests that RWH, compared to all other sources, ranks as the 2nd largest source category of formaldehyde; the 3rd largest of benzene, 1,3-butadiene, and acrolein; and the 4th largest of Pb emissions. RWH also emits more methane compared to natural gas or oil residential heating, raising questions about substitution of wood as a climate neutral heating fuel. However, compared to uncertified stoves, pellet stove EFs (except toxic metals) were significantly lower (p < 0.01). In summary, RWH appears to be an underestimated source of PM (non-catalytic technology), methane, NMTHC, toxic metals, and other HAPs, which has important implications for climate and public health policy in the U.S. and globally.
Read full abstract